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Abstract 

Background Brain metastases are common complications in patients with cancer and significantly affect prognosis 
and treatment strategies. The accurate segmentation of brain metastases is crucial for effective radiation therapy plan-
ning. However, in resource-limited areas, the unavailability of MRI imaging is a significant challenge that necessitates 
the development of reliable segmentation models for computed tomography images (CT).

Purpose This study aimed to develop and evaluate a Diffusion-CSPAM-U-Net model for the segmentation of brain 
metastases on CT images and thereby provide a robust tool for radiation oncologists in regions where magnetic reso-
nance imaging (MRI) is not accessible.

Methods The proposed Diffusion-CSPAM-U-Net model integrates diffusion models with channel-spatial-positional 
attention mechanisms to enhance the segmentation performance. The model was trained and validated on a dataset 
consisting of CT images from two centers (n = 205) and (n = 45). Performance metrics, including the Dice similarity 
coefficient (DSC), intersection over union (IoU), accuracy, sensitivity, and specificity, were calculated. Additionally, this 
study compared models proposed for brain metastases of different sizes with those proposed in other studies.

Results The diffusion-CSPAM-U-Net model achieved promising results on the external validation set. Overall aver-
age DSC of 79.3% ± 13.3%, IoU of 69.2% ± 13.3%, accuracy of 95.5% ± 11.8%, sensitivity of 80.3% ± 12.1%, specificity 
of 93.8% ± 14.0%, and HD of 5.606 ± 0.990 mm were measured. These results demonstrate favorable improvements 
over existing models.
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Conclusions The diffusion-CSPAM-U-Net model showed promising results in segmenting brain metastases in CT 
images, particularly in terms of sensitivity and accuracy. The proposed diffusion-CSPAM-U-Net model provides 
an effective tool for radiation oncologists for the segmentation of brain metastases in CT images.

Keywords Computed tomography, Image procession, Brain metastases, Automated segmentation, Deep learning, 
Stereotactic radiosurgery

Introduction
Brain metastases are secondary brain tumors that origi-
nate from cancer cells that have spread from other parts 
of the body [1]. Epidemiological studies have indicated 
that brain metastases occur in 10% to 40% of patients 
with solid tumors [2]. Clinically, patients with brain 
metastases may present with various symptoms includ-
ing headaches, neurological deficits, seizures, and cogni-
tive disturbances, which can severely affect their quality 
of life and overall prognosis [3].

The clinical management of brain metastases involves 
a multidisciplinary approach including surgery, radio-
therapy, and systemic therapies [4]. Accurate delineation 
of the gross tumor volume (GTV) is crucial in treatment 
planning, especially in radiotherapy, where precise tar-
geting of the tumor while sparing healthy brain tissue is 
essential in maximizing therapeutic efficacy and mini-
mizing adverse effects [5]. Currently, MRI-sim is com-
monly used to simulate the localization of patients with 
brain metastases before stereotactic radiosurgery [6]. 
However, computed tomography (CT) is still used in 
healthcare settings in developing countries as the stand-
ard of care for the simulated localization of brain metas-
tases for radiotherapy [7].

Moreover, the manual segmentation of the GTV from 
CT images is highly challenging owing to the hetero-
geneous appearance of brain metastases, the presence 
of surrounding edema, and variations in image quality 
[8]. This process is not only labor-intensive and time-
consuming but also subject to significant inter- and 
intra-observer variability, which leads to inconsist-
ent treatment outcomes. Therefore, a method that can 
assist radiation oncologists in segmentation is required. 
Given these challenges, current deep-learning methods, 
such as convolutional neural networks (CNNs), have 
shown significant promise for medical image segmen-
tation tasks [9]. Advanced segmentation architectures, 
such as vision transformers, often require large-scale 
datasets and extensive computational resources to 
achieve optimal performance [10]. However, in many 
developing countries, healthcare facilities often lack the 
capacity to support resource-intensive models, which 
limits their practical applicability [11]. In contrast, the 
U-Net architecture has emerged as a highly effective 
solution for medical image segmentation, particularly 

in scenarios with limited data availability [12]. The 
symmetric encoder-decoder structure of U-Net allows 
it to capture multiscale contextual information effi-
ciently, making it well-suited for training on smaller 
datasets [13]. Its relatively simple architecture and low 
computational requirements render it accessible and 
feasible for use in resource-constrained environments. 
Despite its advantages, the standard U-Net model still 
faces challenges in accurately capturing the fine details 
and boundaries of tumors, especially in complex and 
noisy CT images [14]. However, this model may not be 
able to capture complex texture details in CT images. 
This limitation highlights the need for further enhance-
ments to improve the sensitivity and accuracy of U-Net 
in segmenting intricate and clinically significant fea-
tures in medical images.

To address these challenges, we introduce an inte-
grated approach that combines the strengths of dif-
fusion models and an enhanced U-Net architecture. 
Diffusion models are known for their powerful capa-
bilities in image denoising and generation, and they 
offer novel solutions by which to improve the quality 
and robustness of medical image segmentation [15]. 
The forward noise addition process in diffusion mod-
els involves the gradual addition of controlled noise 
to the input image, which helps capture the underly-
ing structure and important features, even under noisy 
conditions [16]. This process enhances the ability of 
the model to retain crucial details and contrast in the 
images, which provides a richer set of features for the 
segmentation task. This step helps accumulate essential 
gradient information, which makes the image structure 
more pronounced for subsequent processing [17]. The 
reverse reconstruction process aims to revert a noisy 
image into its enhanced state [18].

In addition to leveraging diffusion models, this 
study enhances the U-Net architecture by integrat-
ing Channel, Spatial, and Positional Attention Mod-
ules (CSPAM). The original Channel Attention Module 
(CAM) and Spatial Attention Module (SAM) were pro-
posed by Woo et al. [43]. Positional Attention Module 
(PAM), on the other hand, references the positional 
attention module in the Dual Attention Network frame-
work proposed by Fu et al. [44]. In this study, we unified 
all three types of attention modules by integrating them 
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into the U-Net segmentation framework by means of 
tandem. It aims to improve the U-Net model’s ability 
to accurately localize segmentation. The purpose of the 
Channel Attention Module (CAM) is to allocate impor-
tance to feature map channels in a CNN. By assigning 
different weights to each channel, CAM emphasizes 
the channels that contribute the most to the task while 
suppressing irrelevant or redundant channels [19]. 
The Spatial Attention Module (SAM) aims to enhance 
the feature representation of key regions in an image. 
Essentially, it transforms spatial information from the 
original image into another space while retaining criti-
cal information. SAM generates weights for each posi-
tion and applies these weights to the output, thereby 
enhancing specific regions and simultaneously sup-
pressing irrelevant background areas [45]. PAM cal-
culates the correlation between each position in the 
feature map and all other positions. Based on this, it 
generates an attention weight matrix. This matrix is 
then used to adjust the original feature map, enabling 
the model to focus more on spatial locations that are 
highly relevant to the current task. This approach helps 
capture global contextual information [46].

By combining the noise-resilient capabilities of diffu-
sion models with the enhanced attention mechanisms 
of U-Net, our integrated approach aims to significantly 
improve the segmentation accuracy of brain metasta-
ses in CT images. This method not only addresses the 
challenges posed by noisy images but also ensures the 
efficient utilization of limited data, making it highly suit-
able for application in resource-constrained healthcare 
settings. The enhanced U-Net with CSPAM, supported 
by the robust preprocessing of diffusion models, offers 
a promising solution for the automatic segmentation of 
brain metastases. This solution can ultimately aid radia-
tion oncologists in achieving more consistent and precise 
treatment planning.

Methods
Patients
This study analyzed the data of 250 patients who 
underwent radiation therapy between January 2016 
and January 2022. The patients were divided into two 
groups: 205 from the Jiangxi Cancer Hospital and 45 
from the Affiliated Hospital of Southwest Medical Uni-
versity. The study complied with the Declaration of 
Helsinki and received ethical approval from the Ethics 
Review Boards of Jiangxi Cancer Hospital (approval 
no. 2023KY082) and the Affiliated Hospital of South-
west Medical University (approval no. KY2023041). The 
need for informed consent was waived due to the retro-
spective nature of the study. Eligibility criteria included: 
(1) age 18 or older, (2) availability of comprehensive 

electronic health and imaging records, and (3) absence 
of brain abnormalities other than metastases. The 
exclusion criteria were as follows: (1) imaging records 
with artifacts or degradation, (2) presence of other 
brain anomalies, and (3) incomplete patient data. The 
CT image data used for this study was used in a pre-
vious automated segmentation study by our team [20]. 
The mean age of the patients was 54.352 ± 12.375 and 
the male/female ratio of patient composition was 50.8% 
(n = 127):49.2% (n = 123). The top three primary sites 
were lung cancer (60.8%), breast cancer (20%), and mel-
anoma (4.8%) (Supplementary File 1).

Scanning parameters
The CT images from Jiangxi Cancer Hospital were 
obtained using CT simulation scans for patient posi-
tioning during radiotherapy (RT). These scans were 
performed using a Siemens SOMATOM Definition 
AS20 Large-bore CT scanner configured with a tube 
voltage of 120 kVp, tube current of 540 mAs, and scan-
ning range from the skull apex to the third cervical ver-
tebra (C3). The images had a resolution of 512 × 512 
pixels, slice thickness of 3 mm, and field of view (FOV) 
between 250 and 400 mm. At the Affiliated Hospital of 
Southwest Medical University, CT scans were acquired 
for radiotherapy localization using a GE LightSpeed 
RT 4 scanner with the following settings: 120  kVp 
tube voltage, 512 × 512 pixels, slice thickness of 3 mm, 
and 250–400  mm FOV. Additionally, MRI scans were 
conducted using a Philips 3.0  T Ingenia MR-sim sys-
tem that was specifically designed for large-bore mag-
netic resonance radiation positioning. The sequence 
for the patient scan was T1W with parameters TR/
TE = 5.0/2.4 ms and FOV 280–280 mm.

Preprocessing and segmentation of ground truth
All patient images, including contrast-enhanced CT 
and MR scans, were resampled to 1 × 1 × 1   mm3 and 
processed for denoising, histogram equalization, and 
grayscale normalization. Normalization was performed 
with a window width of 100, a window level of 40, 
and a CT HU range from − 10 to 90. The Jiangxi Can-
cer Hospital dataset was used for model training and 
internal validation (n = 205), whereas the Affiliated 
Hospital of Southwest Medical University dataset was 
used for external validation (n = 45). Following contrast 
enhancement, the CT and MR images were fused. Two 
radiation oncologists, each with a decade of experience, 
segmented the gross tumor volume (GTV) of the brain 
metastases, creating regions of interest (ROIs) that 
served as ground truth labels. In cases of discrepancies, 
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a third radiation oncologist with 15 years of experience 
made the final decision. MR images were used only as 
references to delineate the ground truth. The automatic 
segmentation model proposed in this study operates 
exclusively on CT images.

Diffusion model preprocessing enhancement
Noise addition process
In this study, we adopt a diffusion-model-based pre-
processing step inspired by Denoising Diffusion Proba-
bilistic Models (DDPM) [34, 35], which were originally 
introduced to gradually add noise to an image and later 
remove that noise to reconstruct the image (Fig. 1). From 
an initial CT image x0 , we define a sequence of noise level 
parameters {βt}Tt=1 , where each βt controls the amount of 
noise added to the image at each time step. For each time 
step t , the image xt−1 is updated to xt by:

where, εt is random noise drawn from a standard normal 
distribution. The values βt are typically defined within 
a chosen range [βmin,βmax] and can be linearly sched-
uled across t = 1, 2, . . . ,T  . For instance, using a linear 
schedule:

xt =
√

1− βtxt−1 + εt
√

βt , εt ∼ N (0, 1),

βt = βmin + (βmax − βmin)×
t − 1

T − 1

By gradually adding noise, the image transitions from 
its original state x0 to a near-pure noise state xT . This for-
ward process retains the overall structural information of 
the image while providing learning signal for the subse-
quent reverse reconstruction phase.

Reverse reconstruction process
After obtaining the high-noise image xT , the diffusion 
model employs a reverse (denoising) process to itera-
tively recover an estimate x′

0
 of the original image x0 . At 

each reverse time step t , we generate xt−1 conditioned on 
xt according to:

where µθ(xt , t) and �θ(xt , t) are the conditional mean 
and conditional variance, respectively. These are learned 
by a neural network parameterized θ , conditioned on 
both noisy image xt d the time step t . We utilize a U-Net 
architecture, as described in previous studies [36, 37], for 
predicting µθ(xt , t) and �θ(xt , t) . The U-Net is chosen for 
its robust capability in multi-scale feature extraction and 
reconstruction, which is particularly advantageous for 
medical imaging applications [36, 37]. This architecture 
effectively captures both global context and local details, 
enabling the network to perform precise denoising. Dur-
ing training, the network learns to minimize the differ-
ence between the predicted noise and the actual noise 

p(xt−1|xt) = N (µθ (xt , t),�θ(xt , t)),

Fig. 1 Diffusion model processing flow schematic
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added at each time step. Specifically, the loss function is 
defined as:

where ε represents the true noise and εθ (xt , t) is the 
noise predicted by the network. By optimizing this loss, 
the U-Net progressively learns to accurately estimate 
and remove noise from the images across all time steps, 
thereby enabling effective reconstruction of the original 
image x0 . Through the above steps, we synthesized the 
reconstructed CT image through this model, which has 
similar texture details and structure to enhance the data-
set [38, 39].

To evaluate the quality of the reconstructed images x′0 
compared to the original images x0 , we employ Peak sig-
nal to noise ratio (PSNR) and Structural similarity index 
(SSIM) to evaluate the synthetic image quality. In addi-
tion, we compare the performance with several other 
classical models for synthesizing CT images.

L(θ) = Ex0,t,ε

[

ε − ε2θ

]

,

U‑Net architecture with channel, spatial, and positional 
attention mechanisms
Based on the standard U-Net architecture, we integrated 
a channel attention module (CAM), spatial attention 
module (SAM), and positional attention module (PAM) 
to enhance the network’s ability to capture important fea-
tures and spatial information in images (Fig. 2). In addi-
tion, feature space enhancement was achieved by fusing 
the images processed by the diffusion model with the 
original images.

The purpose of the channel attention module is to 
focus on important features in the channel dimensions of 
the feature map. First, global average pooling and global 
max pooling are performed on the input feature map K  
to generate two descriptor vectors: Kavg and Kmax . These 
two descriptor vectors are passed through the shared, 
fully connected layers FC1 and FC2 to generate two 
attention weight vectors. These attention weight vectors 
are then added and passed through a sigmoid activation 
function to generate the channel attention weight JC:

where σ represents the sigmoid function.

JC = σ
(

FC2
(

σ
(

FC1
(

Kavg

)))

⊕ FC2(σ (FC1(Kmax)))
)

,

Fig. 2 Channel, spatial, and positional attention module architecture proposed in this study
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By element-wise multiplying the channel attention 
weight JC with the original feature map K  , we obtain the 
channel-weighted feature map K ′:

The spatial attention module enhances the focus on 
important regions in the spatial dimension of the feature 
map. Global average pooling and max pooling operations 
were performed on the channel-weighted feature map 
K ′ along the channel dimension to generate two spatial 
descriptor vectors: K ′

avg and K ′
max . The aggregated feature 

maps are then passed through a convolution layer, added 
together, and passed through a sigmoid activation func-
tion to generate the spatial attention weight JS:

By element-wise multiplying the spatial attention 
weight JS with the channel-weighted feature map K ′ , we 
obtain the final spatial-channel attention-weighted fea-
ture map KCSAM:

The positional attention module aims to enhance 
the sensitivity of the model to specific spatial informa-
tion. The input feature map KCSAM was convolved and 
reshaped into feature maps C ,D, and E . A dot product is 
performed on C and D , and this is followed by a softmax 
operation to generate the attention map S:

Then, the dot product of E and S is taken and reshaped 
into G:

Finally, G is added element-wise to the input feature 
map KCSAM to obtain the spatial channel-positional 
attention-weighted feature map KCSPAM.

Encoder stage
This study used U-Net as the baseline architecture. Each 
layer of the encoder consists of two convolutional layers 
followed by a downsampling operation, with each con-
volutional layer being followed by a rectified linear unit 
activation function and a batch normalization layer. The 
integrated CSPAM module is applied to the output feature 
map of the last convolutional layer before downsampling. 
This ensures that the network enhances its sensitivity to the 
feature channels, spatial regions, and positional informa-
tion before reducing the feature map size.

K ′ = JC ⊗ K ,

JS = σ

(

Conv
([

K ′
avg ⊕ K ′

max

]))

,

KCSAM = JS ⊗ K ′,

S = Softmax
(

C · DT
)

,

G = E · S.

Decoder stage
Each layer of the decoder is comprised of two convolu-
tional layers and an upsampling operation. The CSPAM 
module is inserted after the output of the convolutional 
layers before upsampling to ensure that the network can 
effectively capture important feature channels, spatial 
information, and positional information while restoring 
the image spatial details. This ultimately enhances the 
ability of the model to capture specific.

Feature fusion with attention modules
Feature space enhancement is achieved by fusing the fea-
tures from the original image and the image processed 
using the diffusion model. The specific processes are as 
follows:

First, input the original image x0 and the reconstructed 
image x′0 into the improved U-Net model. After process-
ing through the encoder stage with CSPAM, we obtain 
KCSPAM(x0 ) and KCSPAM(x′0 ), respectively. The feature 
maps from the original and enhanced images are then 
fused using the weight w to adjust their contribution 
ratios. The fusion formula is:

where Kcombined represents the final fused feature map, 
which is then fed into the decoder part of U-Net. In 
the decoder stage, the features from the original and 
enhanced images are further integrated using a spe-
cially designed feature fusion strategy after each upsam-
pling and a feature fusion operation that is implemented 
through the CSPAM module. The final feature map is 
used to generate the segmentation results.

Segmentation boundary refinement
Although the improved U-Net proposed in this study can 
provide a coarse outline of the tumor region, its segmen-
tation boundaries may still be imprecise or coarse. There-
fore, this study introduces a conditional diffusion model 
to post-process the U-Net segmentation results, aiming 
to preserve the initial segmentation contours while sig-
nificantly enhancing the overall shape consistency and 
boundary precision of the target area. Input image can be 
defined as:

Define the forward inference network based on 
CSPAM U-Net as:

where θ denotes the network parameters. For a given 
input X , forward inference yields a probability map 

Kcombined = w(KCSPAM(x0))+ (1− w)
(

KCSPAM

(

x′0
))

,

X ∈ R
H×W×C

Fθ :∈ R
H×W×C → R

H×W
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Q = Fθ (X) . Here, Q(u) is the predicted confidence that 
the pixel u belongs to the target class. To obtain a binary 
mask for the preliminary segmentation, a threshold 
� ∈ (0, 1) is introduced, and we define:

where the mask G̃ , generated by the CSPAM U-Net, may 
exhibit local deviations in boundary details, partly due to 
the diverse shapes of brain metastases in CT images, as 
well as the potential misjudgments of the attention mod-
ule when dealing with extreme noise or tiny structures. 
To address this issue, this study incorporates a diffusion 
model into the post-processing stage and employs a con-
ditional mechanism to make shape refinements more 
targeted.

The segmentation mask generated by CSPAM 
U-Net can be defined as G̃ . A series of noise-injection 
steps {γk}Kk=1 is established, where each γk controls 
the amount of noise injection into G̃ at the k-th step. 
Through a forward noise-adding process during train-
ing, G̃ is gradually transformed into a distribution 
approximating isotropic Gaussian noise, which can be 
expressed as:

where z0 = G̃ indicates the segmentation mask gener-
ated by CSPAM U-Net, and zk represents the result after 
noise injection at the k-th step. I is the identity covari-
ance matrix. In the inference (reverse denoising) phase, 
the diffusion model needs to progressively restore the 
random noise zk ∼ N (0, I) back to z0 , which is close to 
the ground truth shape distribution.

This study was inspired by the study of conditional 
diffusion model by Rombach et al. [48]. To facilitate the 
introduction of external information for segmentation 
refinement, this study adopts a conditional mechanism 
(cond) , wherein the ground truth segmentation mask 
G̃true and the original image X are jointly provided to 
guide the denoising process. Formally, this can be 
expressed as:

where ψ denotes the parameters of the diffusion model, 
and µψ and �ψ are the mean and covariance output by 
the conditional neural network. The condition 
cond =

{

G̃true,X
}

 serves as the external prior. Hence at 
each iteration of k of the reverse process, we have:

G̃(u) =
{

1, if Q(u) ≥ �

0, otherwise

q
(

zk |zk−1

)

= N
(

zk ;
√
γkzk−1, (1− γk )I

)

, k = 1, . . . ,K

pψ(zk−1|zk , cond) ≈ N
(

zk−1;µψ(zk , cond, k),�ψ(zk , cond, k)
)

zk−1 = µψ(zk , cond, k)+�
1
2
ψεk , εk ∼ N (0, I)

Gradually refining the Gaussian noise state zK  back 
toward the vicinity of the ground truth mask distri-
bution. When the condition includes G̃true , the model 
retains the primary contour as a “segmentation prior”; 
original image X provide local gray-level and texture 
details can be leveraged to enhance the refinement pro-
cess. This ultimately yields a significantly optimized 
segmentation result in terms of both overall shape and 
boundary detail.

Loss function
To optimize the model performance and ensure the 
accuracy of the segmentation results and boundary 
refinement, we designed a composite loss function that 
combines the segmentation and boundary refinement 
losses. The total loss is composed of the cross-entropy 
loss Lseg and boundary refinement loss Lrefine , which are 
expressed as

where Spred is the predicted segmentation result, Strue is 
the ground truth segmentation label, Srefined is the seg-
mentation result after boundary refinement, and � is 
the weight coefficient used to balance the two losses. In 
training the CSPAM U-Net, we employ a combination of 
Dice loss and cross-entropy loss:

The Dice loss is giveby:

where Spred,i and Strue,i denote the predicted and ground-
truth values at the i-th pixel, respectively. The cross-
entropy loss is formulated as:

After obtaining an initial segmentation result from 
the CSPAM U-Net, a conditional diffusion model 
is employed to refine the segmentation boundaries. 
Let ε denote the noise injected into the ground-truth 
segmentation mask at the k-th diffusion step and let 
εψ(zk , cond, k) be  the noise predicted by the diffusion 
network (with parameters ψ ) at the same step. The cor-
responding loss is defined as:

Ltotal = Lseg
(

Spred , Strue
)

+ �Lrefine
(

Srefined , Strue
)

,

Lseg
(

Spred , Strue
)

= LDice
(

Spred , Strue
)

+ LCE
(

Spred , Strue
)

LDice = 1−
2
∑

i

(

Spred,i × Strue,i
)

∑

i S
2
pred,i +

∑

i S
2
true,i

LCE = −
∑

i

[Strue,i log
(

Spred,i
)

+
(

1− Strue,i
)

log
(

1− Spred,i
)



Page 8 of 16Wang et al. Radiation Oncology           (2025) 20:50 

where zk is the noisy segmentation mask at the k-th diffu-
sion step, and cond =

{

G̃true,X
}

 includes both the 
ground truth mask and the original image. Minimizing 
this objective function refines the initial segmentation 
produced by the U-Net. Combined with Lseg , the ultimate 
goal is to enhance the overall quality of the segmentation. 
The pipeline processing flow for this study is schemati-
cally shown as Fig. 3:

Model training and evaluation
All the model parameters, including the weights and 
biases of the convolutional layers, were initialized using 
the He method. The biases were initialized to 0. During 
each iteration, a batch of training data was fed into the 
model for forward propagation, and the output of the 
model was calculated. The model output and true labels 
were used to compute the loss function, which included 
the segmentation loss and boundary refinement loss. 
The gradients of the loss function were then calculated 
and backpropagated through the network to update the 
model parameters. Stochastic gradient descent (SGD) 
was used to optimize and update the network param-
eters, with the update formula for each parameter given 
by:

where θt is the current parameter value, η is the learning 
rate, and ∇θL(θ) is the gradient of the loss function with 
respect to θ.

Lrefine
(

Srefined , Strue
)

= Ezk ,ε,condε − εψ(zk , cond, k)
2

θt+1 = θt − η · ∇θL(θ),

These steps were repeated over multiple training 
epochs until either the model converged or a predeter-
mined number of iterations was reached. The maximum 
number of training epochs was set to 1000, the initial 
learning rate was 0.001, and the learning rate decay was 
 10−4. The batch size was set to 8. The dataset from Jiangxi 
Cancer Hospital (n = 205) was used for model train-
ing. fivefold cross-validation was used on the training 
set to internally validate the model performance. Exter-
nal validation was performed by using the dataset from 
the Affiliated Hospital of Southwest Medical Univer-
sity (n = 45) to validate the generalization of the model. 
In the model evaluation of this study, we first compared 
the overall segmentation performance of the model, and 
the segmentation performance of different sizes of brain 
metastases. Subsequently, comparisons are made with 
the baseline U-Net model, the U-Net model with the 
addition of the CSPAM module proposed in this study, 
and the U-Net model with the addition of both the Dif-
fusion Model and the CSPAM module. Finally, this study 
also includes four mainstream U-Net variant models and 
a Mask R-CNN model for comparing the model perfor-
mance with our proposed model, including the improved 
U-Net model using the Attention Mechanism Module, 
Squeeze Excitation Module, the Residual Module, and 
the Transformer [20, 21, 26, 27, 47]. The performance of 
the models is evaluated using metrics such as Dice coef-
ficient, intersection-to-union ratio (IoU), accuracy, sen-
sitivity, specificity, and Hausdorff distance (HD). These 
metrics clearly indicate the performance of the model in 
the segmentation task.

Fig. 3 Processing flow proposed in this study
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Statistical analysis
All performance metrics (DSC, IoU, Accuracy, Sen-
sitivity, Specificity, and HD) were summarized as 
mean ± standard deviation. We compared each proposed 
model results (CSPAM-U-Net and Diffusion-CSPAM-U-
Net) with the baseline U-Net results in the external vali-
dation dataset using the Wilcoxon signed-rank test. All 
statistical analyses were performed using Python (version 
3.8) with the SciPy library (version 1.4.1).

Results
Quantitative comparison of synthetic CT image
In this study, we compared the proposed method with 
several existing generative adversarial network (GAN) 
models in terms of image synthesis quality. The quan-
titative results are presented in Table  1. We employed 
peak signal-to-noise ratio (PSNR) and structural simi-
larity index (SSIM) as metrics to evaluate the overall 
image quality and structural fidelity. As shown in the 
table, the average PSNR of images synthesized by Cycle 
GAN [40] and Pix2pix GAN [41] reached 29.82 ± 6.25 dB 
and 30.54 ± 6.03  dB, respectively, with SSIM values 
of 0.84 ± 0.06 and 0.86 ± 0.10. Conditional GAN [42] 
showed further improvement, achieving a PSNR of 
33.29 ± 5.16  dB and an SSIM of 0.90 ± 0.08. In contrast, 
our method attained the highest performance, with a 
PSNR of 34.21 ± 4.70 dB and an SSIM of 0.91 ± 0.04, sur-
passing the competing methods in both noise robust-
ness and structural fidelity. These results confirm the 

effectiveness and robustness of our approach in medical 
image synthesis applications.

Segmentation model complexity and computational 
performance
To evaluate the feasibility of our proposed attention-
based framework in resource-constrained or time-sensi-
tive scenarios, we compared the model complexity and 
computational performance across different network 
configurations, as shown in Table 2. The baseline U-Net 
comprises 31.75 million parameters (M) and requires 
approximately 31.29 GigaFLOPs (G) per forward pass; 
under our training setup, it achieves a total training time 
of 104.63 h while sustaining an inference speed of 20 ms 
per slice. By progressively incorporating attention mod-
ules, we observe incremental increases in parameter 
count and computational cost. Specifically, integrating 
the Channel Attention Module (CAM) (U-Net + CAM) 
slightly raises the parameter count from 31.75  M to 
31.81  M, but the FLOPs jump from 31.29G to 47.67G, 
reflecting the higher arithmetic intensity of channel-wise 
feature recalibration. Similarly, adding the Spatial Atten-
tion Module (SAM) (U-Net + CAM + SAM) raises the 
FLOPs to 42.83G and extends the total training time to 
107.80  h, with an inference latency of 29  ms per slice. 
When Positional Attention Module (PAM) is further 
introduced (CSPAM-U-Net), the model reaches 32.30 M 
parameters and 58.05G FLOPs, incurring a total training 
time of 110.17 h and a slice-level inference time of 35 ms. 
Despite this additional overhead, the advanced attention 
synergy (channel, spatial, and positional) potentially leads 
to more robust feature representations and improved 
segmentation accuracy.

Overall model performance evaluation
The proposed diffusion-CSPAM-U-Net model demon-
strated superior performance in both internal and exter-
nal validations compared with the baseline U-Net and 
CSPAM-U-Net models (Table  3). In internal validation, 

Table 1 Numerical comparison among original images and 
synthetic images generated by different models

PSNR, Peak signal to noise ratio; SSIM, Structural similarity index

Method PNSR (dB) SSIM

Cycle GAN [40] 29.82 ± 6.25 0.84 ± 0.06

Pix2pix GAN [41] 30.54 ± 6.03 0.86 ± 0.10

Conditional GAN [42] 33.29 ± 5.16 0.90 ± 0.08

Ours 34.21 ± 4.70 0.91 ± 0.04

Table 2 Comparison of model complexity and computational performance

Note: The total training time included the diffusion model. The inference time is the time of inference per slice on the validation set for the completed trained model

CAM, Channel Attention Module; SAM, Spatial Attention Module; PAM, Positional Attention Module; Params, Parameters; GFLOPs, Giga Floating-point Operations Per 
Second

Model Params (M) FLOPs (G) Total Training Time (h) Inference 
Time/Per Slice 
(ms)

U-Net 31.75 M 31.29G 104.63 h 20 ms

U-Net + CAM 31.81 M 47.67G 105.52 h 27 ms

U-Net + CAM + SAM 31.94 M 42.83G 107.80 h 29 ms

U-Net + CAM + SAM + PAM (CSPAM-U-
Net)

32.30 M 58.05G 110.17 h 35 ms
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the diffusion-CSPAM-U-Net achieved a Dice similar-
ity coefficient (DSC) of 84.4% ± 12.8%, intersection over 
union (IoU) of 73.1% ± 12.5%, accuracy of 97.2% ± 9.6%, 
sensitivity of 83.8% ± 11.3%, specificity of 97.2% ± 13.8%, 
and Hausdorff distance (HD) of 5.107 ± 0.984  mm. 
These results indicate a substantial improvement in 

capturing the true extent of brain metastases and mini-
mizing segmentation errors. In the external valida-
tion, the model maintained robust performance with a 
DSC of 79.3% ± 13.3%, IoU of 69.2% ± 13.3%, accuracy 
of 95.5% ± 11.8%, sensitivity of 80.3% ± 12.1%, specific-
ity of 93.8% ± 14.0%, and HD of 5.606 ± 0.990 mm. These 

Table 3 Overall mean results of automated segmentation of brain metastases

DSC, Dice similarity coefficient; IoU, intersection over union. “a” represents the comparison with U-Net where CSPAM-U-Net is significantly different in the 
corresponding metrics (P < 0.05). “b” denotes that Diffusion-CSPAM-U-Net is significantly different in the comparison with U-Net on the corresponding metric (P < 0.05)

DSC IoU Accuracy Sensitivity Specificity HD (mm)

Internal validation

U-Net 0.760 ± 0.138 0.652 ± 0.130 0.907 ± 0.114 0.745 ± 0.129 0.894 ± 0.142 7.526 ± 1.107

CSPAM-U-Net 0.801 ± 0.126 0.700 ± 0.132 0.951 ± 0.110 0.792 ± 0.111 0.940 ± 0.145 6.430 ± 0.986

Diffusion-CSPAM-U-Net 0.844 ± 0.128 0.731 ± 0.125 0.972 ± 0.096 0.838 ± 0.113 0.972 ± 0.138 5.107 ± 0.984

External validation

U-Net 0.698 ± 0.151 0.886 ± 0.111 0.708 ± 0.124 0.821 ± 0.147 8.324 ± 1.225

CSPAM-U-Net 0.756 ± 0.139a 0.656 ± 0.115 0.937 ± 0.107 0.761 ± 0.126 0.890 ± 0.139a 6.819 ± 1.104a

Diffusion-CSPAM-U-Net 0.793 ± 0.133b 0.692 ± 0.133b 0.955 ± 0.118 0.803 ± 0.121b 0.938 ± 0.140b 5.606 ± 0.990b

Fig. 4 Random samples were selected to demonstrate the segmentation results of the model proposed in this study. A From the external 
validation dataset. B From the training dataset
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metrics confirm the ability of the model to generalize 
well to new datasets, and demonstrate its generalizability 
to real clinical settings.

The visualization of the segmentation effect of the 
model proposed in this study is shown in Fig.  4. To 
further elucidate the performance and interpretability 
of the proposed diffusion-CSPAM-U-Net model, gra-
dient-weighted class activation mapping (Grad-CAM) 

was employed to visualize the focus areas during seg-
mentation. Figure  5 provides a comparative view of 
the Grad-CAM results for the diffusion-CSPAM-U-
Net, CSPAM-U-Net, and U-Net models on randomly 
selected images from the datasets. The Grad-CAM 
visualizations show that the diffusion-CSPAM-U-Net 
model exhibits a more concentrated and accurate focus 
on the tumor regions than do the other models. This 

Fig. 5 Gradient-weighted class activation mapping (Grad-CAM)

Table 4 Comparison of segmentation results between the proposed model and those of other studies for brain metastases of 
different sizes in the external validation dataset

DSC, Dice similarity coefficient; IoU, intersection over union

DSC IoU Accuracy Sensitivity Specificity

Proposed model

 < 5 mm 0.652 ± 0.163 0.549 ± 0.158 0.780 ± 0.136 0.657 ± 0.158 0.780 ± 0.133

5–20 mm 0.775 ± 0.141 0.669 ± 0.144 0.936 ± 0.120 0.794 ± 0.127 0.924 ± 0.128

 > 20 mm 0.816 ± 0.118 0.710 ± 0.140 0.969 ± 0.113 0.871 ± 0.115 0.961 ± 0.124

PAM-U-Net [21]

 < 5 mm 0.624 ± 0.168 0.526 ± 0.146 0.805 ± 0.123 0.630 ± 0.114 0.732 ± 0.139

5-20 mm 0.726 ± 0.121 0.630 ± 0.137 0.927 ± 0.115 0.712 ± 0.106 0.909 ± 0.116

 > 20 mm 0.753 ± 0.094 0.698 ± 0.119 0.963 ± 0.106 0.747 ± 0.098 0.974 ± 0.103

GAN + Mask-R CNN + CRF [20]

 < 5 mm 0.635 ± 0.090 0.512 ± 0.058 0.776 ± 0.071 0.618 ± 0.102 0.839 ± 0.095

5-20 mm 0.710 ± 0.121 0.624 ± 0.104 0.875 ± 0.101 0.731 ± 0.105 0.912 ± 0.112

 > 20 mm 0.749 ± 0.098 0.675 ± 0.082 0.938 ± 0.113 0.850 ± 0.089 0.967 ± 0.107
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enhanced focus contributes to higher Dice similarity 
coefficient (DSC) and intersection over union (IoU) 
scores, indicating the superior ability of the model to 
accurately delineate tumor boundaries.

Subgroup model performance results based on different 
sizes of brain metastases
This study evaluated the proposed model on brain metas-
tases of different sizes revealed its effectiveness under 
various conditions (Table 4). In this study, the tumor size 
was determined by evaluating each metastasis on a slice-
by-slice basis to identify the cross-sectional slice exhib-
iting the greatest extent of the lesion. On this identified 
slice, the maximum in-plane diameter was measured, 
reflecting the largest linear distance across the tumor. 
For metastases smaller than 5 mm, the model achieved a 
DSC of 65.2% ± 16.3%, IoU of 54.9% ± 15.8%, accuracy of 
78.0% ± 13.6%, sensitivity of 65.7% ± 15.8%, and specificity 
of 78.0% ± 13.3%. These results indicate that although the 
model performs reasonably well on smaller lesions, there 
is room for improvement in accurately segmenting small 
metastases. For medium-sized metastases (5–20  mm), 
the model’s performance improved significantly with a 
DSC of 77.5% ± 14.1%, IoU of 66.9% ± 14.4%, accuracy of 
93.6% ± 12.0%, sensitivity of 79.4% ± 12.7%, and specificity 
of 92.4% ± 12.8%. This suggests that the model can effec-
tively handle intermediate-sized lesions with improved 
accuracy and precision. For larger metastases (> 20 mm), 
the model achieved the highest performance with a 
DSC of 81.6% ± 11.8%, IoU of 71.0% ± 14.0%, accuracy of 
96.9% ± 11.3%, sensitivity of 87.1% ± 11.5%, and specificity 

of 96.1% ± 12.4%. The high metrics in this category dem-
onstrate the robustness of the model in accurately deline-
ating larger tumor volumes, which are often more critical 
in clinical decision-making.

Comparison of overall performance with other brain 
metastases computed tomography image segmentation 
models
The diffusion-CSPAM-U-Net model outperformed 
other state-of-the-art models in terms of several key 
metrics (Table  5). Compared with the GAN + Mask-R-
CNN + CRF model, which had a DSC of 72.6% ± 12.8% 
and IoU of 64.0% ± 13.6%, the proposed model achieved 
higher DSC (79.3% ± 13.3%) and IoU (69.2% ± 13.3%) val-
ues. This improvement highlights the enhanced capabil-
ity of the proposed model to accurately segment brain 
metastases. A comparison with PAM-U-Net further 
emphasizes the superiority of diffusion-CSPAM-U-Net. 
While the PAM-U-Net achieved a DSC of 75.3% ± 17.2% 
and an IoU of 67.2% ± 15.9%, the proposed model 
showed better performance in both metrics. Addition-
ally, the proposed model demonstrated higher accuracy 
(95.5% ± 11.8% versus 94.8% ± 12.5%), better sensitivity 
(80.3% ± 12.1% versus 72.1% ± 11.6%), and competitive 
specificity (93.8% ± 14.0% versus 96.3% ± 10.4%). Moreo-
ver, the proposed model’s HD of 5.606 ± 0.990  mm in 
external validation is notably lower than the HD values 
reported for other models, indicating a finer and more 
precise boundary delineation capability. This charac-
teristic is critical for improving the clinical usability 
of the segmentation outputs, particularly in treatment 

Table 5 Comparison of previous studies

DSC, Dice similarity coefficient; IoU, intersection over union; HD, Hausdorff distance

Proposed Model GAN + Mask‑R‑
CNN + CRF [20]

PAM‑U‑Net [21] ST‑U‑Net [21] SEA‑U‑Net [21] SERR‑U‑Net [21]

DSC 0.793 ± 0.133 0.726 ± 0.128 0.753 ± 0.172 0.747 ± 0.158 0.730 ± 0.135 0.718 ± 0.156

IoU 0.692 ± 0.133 0.640 ± 0.136 0.672 ± 0.159 0.667 ± 0.143 0.648 ± 0.150 0.625 ± 0.141

Accuracy 0.955 ± 0.118 0.915 ± 0.118 0.948 ± 0.125 0.930 ± 0.131 0.919 ± 0.118 0.898 ± 0.122

Sensitivity 0.803 ± 0.121 0.765 ± 0.131 0.721 ± 0.116 0.749 ± 0.120 0.702 ± 0.131 0.694 ± 0.126

Specificity 0.938 ± 0.140 0.922 ± 0.117 0.963 ± 0.104 0.951 ± 0.112 0.978 ± 0.106 0.946 ± 0.114

HD 5.606 ± 0.990 7.356 ± 0.603 6.912 ± 0.620 7.241 ± 0.835 7.539 ± 0.547 7.706 ± 0.728

Table 6 Comparison of different channel and spatial attention pooling methods

DSC, Dice Coefficient; IoU, Intersection over Union; Params, Parameters; GFLOPs, Giga Floating-point Operations Per Second

Methods DSC (%) IoU (%) Params (M) GFLOPs (G)

CSPAM-U-Net (AvgPool) 72.8% 61.3% 32.30 M 52.39G

CSPAM-U-Net (MaxPool) 71.2% 60.4% 32.30 M 56.87G

CSPAM-U-Net (AvgPool & MaxPool) 75.6% 65.6% 32.30 M 58.05G
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planning and monitoring. Despite these strengths, the 
diffusion-CSPAM-U-Net model has some areas in which 
it does not outperform the other models. For instance, 
the model’s specificity, while competitive, is lower than 
that of SEA-U-Net (97.8% ± 10.6%) and SERR-U-Net 
(94.6% ± 11.4%). Higher specificity is important for mini-
mizing false positives, and the slightly lower specificity 
here suggests that the diffusion-CSPAM-U-Net model 
might produce more false positive segments than do 
these models.

Ablation experiments with pooling approaches 
for channels and spatial attention modules
To evaluate the impact of pooling strategies in chan-
nel and spatial attention modules, we conducted abla-
tion experiments with three variants of CSPAM-U-Net: 
(1) using average pooling (AvgPool) only, (2) using max 
pooling (MaxPool) only, and (3) combining both pooling 
operations. The quantitative comparisons are summa-
rized in Table  6. The experimental results demonstrate 
that the hybrid pooling strategy (AvgPool & MaxPool) 
achieves the highest segmentation performance, with 
a Dice Similarity Coefficient (DSC) of 75.6% and an 
Intersection-over-Union (IoU) of 65.6%. This represents 
a significant improvement of 2.8% in DSC and 4.3% in 
IoU compared to the AvgPool-only variant (72.8% DSC, 
61.3% IoU), and an even larger margin over the MaxPool-
only variant (71.2% DSC, 60.4% IoU). The performance 
gap suggests that combining complementary pooling 
operations enables more robust feature aggregation. Spe-
cifically, AvgPool preserves global contextual information 
while MaxPool emphasizes salient local features, leading 
to enhanced attention maps. Notably, all three variants 
maintain identical parameter counts (32.30  M), indicat-
ing that the performance gains stem from architectural 
improvements rather than increased model capacity. 
However, the hybrid pooling approach incurs a moderate 
computational cost increase (58.05G GFLOPs) compared 
to AvgPool-only (52.39G GFLOPs) and MaxPool-only 
(56.87G GFLOPs) configurations. This balance between 
accuracy and computational complexity suggests that the 
combined pooling strategy effectively utilizes multi-scale 
information for attention refinement, justifying its adop-
tion in our final architecture.

Discussion
In this study, the proposed diffusion-CSPAM-U-Net 
model demonstrated promising results in the segmenta-
tion of brain metastases in CT images. This study aimed 
to aid radiation oncologists in resource-limited areas of 
developing countries where MRI-sim is not available in 
GTV segmentation. The proposed diffusion-CSPAM-U-
Net model, compared with CSPAM-U-Net in external 

validation, improved the DSC, IoU, sensitivity, specificity, 
and HD metrics by 4.9%, 5.5%, 5.5%, and 5.4%, respec-
tively, and it reduced the HD by 1.213  mm. Compared 
with U-Net, the improvements in the DSC, IoU, sen-
sitivity, specificity, and HD values were 13.6%, 17.9%, 
13.4%, 14.2%, and 2.718  mm, respectively. These results 
indicate significant improvements in both capturing the 
true extent of brain metastases and reducing segmenta-
tion errors, thereby demonstrating their great potential 
for clinical applications. Notably, the diffusion-CSPAM-
U-Net model significantly improved sensitivity to 
80.3% ± 12.1%, showcasing the effectiveness of integrating 
diffusion models and channel-spatial-positional attention 
modules. This means that the model is more sensitive in 
detecting brain metastases, which thereby reduces the 
risk of missing GTV segmentation.

Compared with the results of previous studies, the 
diffusion-CSPAM-U-Net model performed excellently in 
multiple key metrics. Compared with the GAN + Mask-
R-CNN + CRF model proposed by Wang et  al. [20], the 
diffusion-CSPAM-U-Net model improved the Dice 
similarity coefficient (DSC) by 8.2%, intersection over 
union (IoU) by 8.1%, accuracy by 4.4%, sensitivity by 
5.0%, and specificity by 1.7%. Compared with PAM-U-
Net, the DSC improved by 5.3%, IoU by 3.0%, accuracy 
by 0.7%, and sensitivity by 8.2%. Although the specific-
ity slightly decreased, it remained at a high level (93.8% 
versus 96.3%). The ResNet-101 backbone architecture of 
the GAN + Mask-R-CNN + CRF model was built through 
pretraining. Although pretraining improves the initial 
performance of the model to an extent, it also has some 
limitations. First, pretrained models are typically trained 
on large datasets (such as ImageNet), which have sig-
nificant differences in feature distribution and imaging 
patterns compared with medical image datasets [22]. 
Therefore, pretrained models may not fully capture spe-
cific features and details in medical images when trans-
ferred to medical image segmentation tasks, which 
thereby limits segmentation performance [23]. Addi-
tionally, the GAN + Mask-R-CNN + CRF model relies 
on a multistage processing pipeline (i.e., GAN gener-
ates samples, Mask-R-CNN performs segmentation, and 
CRF performs post-processing), which can lead to error 
accumulation, with errors at each stage affecting the final 
segmentation result [24]. The training method used by 
diffusion-CSPAM-U-Net integrates image enhancement 
and segmentation into a unified framework that reduces 
the risk of error propagation and improves the overall 
segmentation performance.

Compared with the models built on the transformer 
architecture (ST-U-Net) and those improved with the 
squeeze-and-excitation (SE) module (SEA-U-Net and 
SERR-U-Net), diffusion-CSPAM-U-Net exhibited 
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superior performance in terms of DSC, IoU, accuracy, 
and sensitivity [25–27]. In particular, diffusion-CSPAM-
U-Net significantly improved from 10.1 to 15.4%, which 
is crucial for reducing the risk of missed diagnoses. 
Although the specificity was slightly lower than those of 
SEA-U-Net and SERR-U-Net, the overall performance of 
diffusion-CSPAM-U-Net was better, especially in terms 
of segmentation accuracy and sensitivity. The ST-U-Net 
model, which is based on the transformer architecture, 
performs well in capturing global contextual informa-
tion; however, transformer architectures typically require 
large-scale sample data for training to fully realize their 
potential [28]. This is a challenge for medical image 
datasets because obtaining high-quality annotated data 
is often time-consuming and costly. Therefore, the per-
formance of ST-U-Net on small-sample datasets may be 
limited, whereas diffusion-CSPAM-U-Net adapts bet-
ter to feature extraction and segmentation tasks under 
small-sample conditions by introducing diffusion models 
and attention mechanisms. The SEA-U-Net and SERR-
U-Net models use a squeeze-and-excitation (SE) module 
to enhance feature representation capabilities. The SE 
module adapts by recalibrating the weights of the fea-
ture channels to thereby enhance the focus of the model 
on important features [29, 30]. However, the introduc-
tion of the SE module also increases the complexity and 
computational load of the model, which may reduce the 
efficiency of high-resolution image processing. Addition-
ally, although the SE module enhances the selectivity of 
the feature channels, its effect may be limited when deal-
ing with CT images with complex backgrounds and high 
noise levels [31].

In the comparison of segmentation performance 
across different sizes of brain metastases, the diffusion-
CSPAM-U-Net model performed well in each subgroup 
but also showed some advantages and disadvantages. 
For metastases smaller than 5  mm, the diffusion-
CSPAM-U-Net’s Dice similarity coefficient (DSC) was 
0.652 ± 0.163, which was significantly higher than Wang 
et  al.’s PAM-U-Net (0.624 ± 0.168) and GAN + Mask-R-
CNN + CRF (0.635 ± 0.090). This indicates that diffusion-
CSPAM-U-Net can better capture tumor boundaries 
when dealing with small lesions to thereby improve the 
detection sensitivity and accuracy. However, its speci-
ficity was 0.780 ± 0.133, which was slightly lower than 
GAN + Mask-R-CNN + CRF’s 0.839 ± 0.095, indicat-
ing room for improvement in reducing false positives. 
Nevertheless, the diffusion-CSPAM-U-Net model still 
had an advantage in terms of sensitivity (0.657 ± 0.158), 
showing better performance in detecting small lesions. 
Overall, diffusion-CSPAM-U-Net demonstrated signifi-
cant advantages in the segmentation of brain metasta-
ses of different sizes, particularly in terms of sensitivity 

and segmentation accuracy. Its excellent performance for 
metastases smaller than 5  mm and 5–20  mm in size is 
particularly noteworthy because detecting these lesions 
is challenging and requires a higher discriminative ability 
from the model.

Despite the outstanding performance of the diffusion-
CSPAM-U-Net model in multiple aspects, it still has 
a lower specificity than do models such as ST-U-Net 
based on the transformer architecture, SEA-U-Net, 
SERR-U-Net using squeeze-and-excitation mechanisms, 
and PAM-U-Net using individual positional attention 
modules. The noise and diversity introduced by the dif-
fusion model during the preprocessing stage enhance 
image details but may also increase responses to non-
tumor areas and thereby affect specificity [32]. The diffu-
sion model improves image quality and model sensitivity 
by gradually adding noise and learning to reconstruct 
images from noise. However, when processing low-qual-
ity CT images, the introduced noise may cause normal 
tissues to be misidentified as tumors. Specifically, the dif-
fusion model may enhance background noise and non-
tumor structural features while enhancing image details, 
thereby increasing the probability of false positives. 
Although this method significantly improves the sensi-
tivity of detecting small lesions and lesions with blurred 
edges, it also has a negative impact on the specificity of 
the model. Additionally, the use of channel-spatial-posi-
tional attention modules (CSPAM) enhances the model’s 
ability to capture important features and spatial informa-
tion, but it may also increase sensitivity to background 
noise. The CSPAM modules enhance the model’s focus 
on specific features via channel attention, spatial atten-
tion, and positional attention mechanisms. These atten-
tion mechanisms can effectively focus on tumor areas 
and improve both segmentation accuracy and sensitivity 
[33]. However, in complex conditions of brain metasta-
ses, which often involve multiple lesions and complex 
brain tissue backgrounds, attention mechanisms may 
mistakenly identify certain background features as tumor 
features and thereby increase the false positive rate. For 
example, in images with complex backgrounds or high 
noise levels, attention mechanisms may overemphasize 
certain features of non-tumor areas and lead to misjudg-
ment by the model.

Despite the promising performance of the diffusion-
CSPAM-U-Net model in brain metastasis CT image 
segmentation, some limitations remain. First, the over-
all segmentation performance for small brain metas-
tases (< 5  mm) remains limited. Additionally, as this is 
a dual-center study, and although it has achieved good 
results on an independent external validation set, the 
model may be affected when handling data from different 
devices, imaging parameters, and populations. Therefore, 
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cross-national multicenter studies are needed to fur-
ther validate the generalizability of this model. Future 
research will optimize the parameters of the diffusion 
model and attention mechanisms to reduce the impact 
of background noise and improve specificity. The intro-
duction of more intelligent noise processing methods and 
multilayer attention mechanisms should be considered to 
improve the ability of the model to distinguish between 
tumors and normal tissues. Additionally, additional brain 
metastasis CT image data from different sources, quali-
ties, and populations should be collected internationally 
to enhance the generalizability and robustness of the 
model.

Conclusion
The proposed diffusion-CSPAM-U-Net model demon-
strates significant improvements in the segmentation of 
brain metastases in CT images, especially in resource-
limited environments where MRI-sim is not available, 
and it provides a helpful tool for radiation oncologists 
performing segmentation. By integrating diffusion and 
channel-spatial-positional attention mechanisms, the 
model significantly improves performance metrics com-
pared with those of existing models.
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