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Abstract
Background  Radiotherapy treatment planning traditionally involves complex and time-consuming processes, 
often relying on trial-and-error methods. The emergence of artificial intelligence, particularly Large Language Models 
(LLMs), surpassing human capabilities and existing algorithms in various domains, presents an opportunity to 
automate and enhance this optimization process.

Purpose  This study seeks to evaluate the capacity of LLMs to generate radiotherapy treatment plans comparable 
to those crafted by human medical physicists, focusing on target volume conformity and organs-at-risk (OARs) dose 
sparing. The goal is to automate the optimization process of radiotherapy treatment plans through the utilization of 
LLMs.

Methods  Multiple LLMs were employed to adjust optimization parameters for radiotherapy treatment plans, using 
a dataset comprising 35 cervical cancer patients treated with volumetric modulated arc therapy (VMAT). Customized 
prompts were applied to 5 patients to tailor the LLMs, which were subsequently tested on 30 patients. Evaluation 
metrics included target volume conformity, dose homogeneity, monitor units (MU) value, and OARs dose sparing, 
comparing plans generated by various LLMs to manual plans.

Results  With the exception of Gemini-1.5-flash, which faced challenges due to hallucinations, Qwen-2.5-max and 
Llama-3.2 produced acceptable VMAT plans in 16.3 ± 5.0 and 9.8 ± 2.1 min, respectively, outperforming an experienced 
human physicist’s time cost of about 20 min. The average conformity index (CI) for Qwen-2.5-max plans, Llama-
3.2 plans, and manual plans on the test set were 0.929 ± 0.007, 0.928 ± 0.007, and 0.926 ± 0.007, respectively. The 
average homogeneity index (HI) was 0.058 ± 0.006, 0.059 ± 0.005, and 0.065 ± 0.006, respectively. While there was a 
significant difference in target volume conformity between LLM plans and manual plans, OARs dose sparing showed 
no significant variations. In lateral comparisons among different LLMs, no statistically significant differences were 
observed in the PTV dose, OARs dose sparing, and target volume conformity between Qwen-2.5-max and Llama-3.2 
plans.

Conclusions  Through an assessment of LLM-generated plans and clinical plans in terms of target volume conformity 
and OARs dose sparing, this study provides preliminary evidence supporting the viability of LLMs for optimizing 
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Introduction
Radiotherapy treatment planning stands as a pivotal ele-
ment within the realm of radiotherapy procedures. A 
well-crafted radiotherapy treatment plan is paramount in 
ensuring that the planning target volume (PTV) receives 
an optimal radiation dose while simultaneously mini-
mizing exposure to surrounding organs at risk (OARs). 
Crafting such a plan poses an intricate optimization 
conundrum with multiple conflicting objectives [1–6]. 
Traditionally, medical physicists rely on a labor-intensive 
trial-and-error methodology to iteratively fine-tune opti-
mization parameters, such as the dose goals for differ-
ent OARs, to achieve an acceptable treatment plan. This 
conventional process is not only time-consuming but also 
computationally intensive, leading to inefficiencies in the 
treatment planning workflow [7–10].

To enhance the efficiency of treatment planning, 
researchers have proposed diverse methodologies, 
including automated rule implementation and reason-
ing (ARIR), knowledge-based planning (KBP), and multi-
criteria optimization (MCO). ARIR employs pre-set rules 
within the treatment planning system (TPS) to automate 
beam setup and optimize treatment plans based on dose-
volume histograms (DVH) [11, 12]. KBP involves creating 
a repository of plans serving as templates for various can-
cer types, allowing for the identification of the most anal-
ogous plan for a new case, thereby reducing the requisite 
number of iterations [13–15]. In the MCO approach, 
physicists simultaneously generate multiple anchor 
plans, each optimizing a single DVH criterion of an OAR 
to achieve optimal sparing without compromising PTV 
dosimetric criteria, forming a Pareto surface with a spec-
trum of optimal plans across different dosimetric criteria. 
This approach allows physicists to navigate through vari-
ous Pareto-optimal plans to select the most suitable one 
based on their preferences [16–18]. MCO has been suc-
cessfully implemented in TPS such as RayStation (RaySe-
arch, Stockholm, Sweden) and Eclipse (Varian, Palo Alto, 
USA).

With the advent of artificial intelligence (AI), novel ave-
nues for efficient treatment planning have emerged. One 
notable approach involves leveraging AI to predict flu-
ence maps, convertible into multi-leaf collimator (MLC) 
sequences for intensity modulated radiotherapy (IMRT) 
plans using tools like the Eclipse scripting API (ESAPI) 
[19, 20]. For VMAT plans, researchers predict dose distri-
butions from CT images and input them into the TPS for 
further optimization [21, 22]. McIntosh et al. proposed 
a voxel-based dose mimicking algorithm to convert the 

predicted dose distribution to a complete treatment plan, 
achieving a fully automated treatment planning [23–26].

Seeking further automation, researchers have explored 
reinforcement learning techniques [27, 28]. Some studies 
have utilized neural networks to generate and adjust opti-
mization parameters iteratively, enhancing plan optimi-
zation efficiency [29]. Reinforcement learning networks 
have been integrated into TPS, allowing for the genera-
tion of machine-executable plans directly [30, 31]. How-
ever, training neural networks for reinforcement learning 
demands substantial data and computational resources, 
additionally, a separate network must be trained for each 
specific cancer type, presenting challenges for clinical 
application [32].

Large language models (LLMs) have found broad appli-
cations across diverse domains, including radiotherapy. 
While LLMs have facilitated knowledge dissemination 
to patients and aided in medical record documentation, 
their potential in radiotherapy physics remains under-
explored [33–39]. Some researchers have studied the 
role of LLM in dose prediction. Dong et al. proposed 
DoseGNN for dose prediction, in which LLM was used 
to process prescription information to enhance network 
performance [40]. During radiotherapy treatment plan-
ning, physicists evaluate dosimetric parameters provided 
by the TPS to adjust optimization parameters. Current 
LLMs possess analysis and reasoning capabilities and are 
trained by a large number of standard corpora, allowing 
them to be customized to master some skills with mini-
mal data. Therefore, LLMs can be attempted to perform 
iterative optimization of radiotherapy plans to improve 
the automation of the optimization process with a small 
amount of training data. Liu et al. attempted to use LLM 
to optimize treatment plans for prostate cancer, showing 
the potential of LLM [32].

In this study, we investigated the feasibility of leverag-
ing LLMs for automating radiotherapy treatment plan-
ning, focusing on cervical cancer plans. By utilizing 
multi-modality LLMs to evaluate and adjust plans itera-
tively, we aim to assess the efficacy of LLMs in optimiz-
ing treatment plans compared to manual optimization by 
experienced physicists.

Materials and methods
Research framework
The research framework for this study is illustrated 
in Fig.  1. To optimize treatment planning using LLM, 
we developed a virtual plan designer utilizing multi-
modal LLM. This system is capable of evaluating plans 

radiotherapy treatment plans. The implementation of LLMs demonstrates the potential for enhancing clinical 
workflows and reducing the workload associated with treatment planning.
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and adjusting optimization parameters. Following each 
optimization iteration, dosimetric parameters for the 
PTV and OARs are input into the LLM for assessment. 
Adjusted optimization parameters are then generated 
based on this evaluation and fed back into the TPS for 
subsequent iterations until the PTV and OARs dose cri-
teria are met.

Dataset
The dataset comprises 35 cervical cancer patients who 
underwent VMAT at our hospital between September 
2023 and August 2024. Patients with cervical cancer were 
included, the upper boundary of the PTV was below 
the kidney, and those with lymph node metastasis were 
excluded. OARs considered in the study encompassed 
the bladder, small intestine, rectum, bone marrow, spi-
nal cord, as well as the left and right femoral heads. Each 
patient’s data included CT images delineating the PTV 
and OARs, along with clinically approved manual plans.

According to our preliminary research, it takes less 
than 5 patient cases to customize an LLM. In this study, 
5 of the 35 patients were allocated to the training set for 
customizing LLMs in radiotherapy treatment planning. 
The remaining 30 patients constituted the test set, where 
LLM autonomously conducted treatment planning. To 
assess the generalization ability of LLMs in generating 
radiotherapy plans with varying target locations, two 
patients with PTVs extending to the inguinal region were 
included in the test set.

The prescribed dose for the PTV in cervical cancer was 
36.0 Gy (1.8 Gy per fraction × 20 fractions), covering 95% 
of the PTV. A coplanar two-arc VMAT plan with gantry 
angles ranging from 0° to 360° was employed for the cer-
vical cancer plans.

TPS and plan optimization
In this work, the treatment plan optimization and dose 
calculation were performed using uTPS (United Imag-
ing Healthcare Co., Ltd., Shanghai, China). Upon OARs 
delineation, auxiliary structures including R2 (expand 
PTV by 0.5 cm and create a ring of 2.5 cm), R3 (expand 
PTV by 1.0  cm and create a ring of 2.0  cm), and R4 
(expand PTV by 1.5 cm and create a ring of 1.5 cm) were 
created to aid in plan generation. Plan templates were 
customized via the clinical protocol manager in uTPS, 
with initial plan objectives empirically set based on his-
torical plan metrics and clinical expertise.

Various optimization objectives such as maximum 
dose, minimum dose, DVH (Dose-Volume Histogram) 
parameters, and mean dose were selected in uTPS. Dur-
ing optimization, dose goals for OARs were adjusted 
while maintaining consistent weights. Plan objectives 
for target volumes, OARs, and auxiliary structures along 
with their initial dose goals are detailed in Table 1.

After each iteration, uTPS could provide a “constraint 
target value” based on the gap between the dose goal and 
the current dose for each optimization objective. The 
constraint target value is expressed in scientific notation 
and ranges from [0.00E + 0, +∞]. The smaller the value, 
the closer the current dose is to the dose goal, indicating 
that this optimization objective is not strictly limited.

In the clinical planning process, on the premise of not 
affecting the target volume conformity, it is generally 
believed that when the constraint target value is between 
1.00E-2 and 5.00E-2, the optimization objectives of the 
small intestine, rectum, and bladder will be strictly lim-
ited. For other OARs, to avoid overly strict restrictions, 
resulting in poor target volume conformity or high dose 
of important OARs like small intestine, it is generally 

Fig. 1  The workflow of using LLM for radiotherapy treatment planning

 



Page 4 of 13Wei et al. Radiation Oncology           (2025) 20:77 

considered that when the constraint target value is 
between 1.00E-4 and 1.00E-2, the degree of restriction is 
appropriate. This criterion provides a reference for plan-
ning optimization using LLMs.

In this study, the photon energy was set at 6MV. The 
collimator angles of the two arcs were both set at 0°. The 
Fluence Map Optimization (FMO) algorithm was used 
for VMAT treatment plan optimization [41]. For dose 
calculation, the collapsed cone algorithm was used with 
a dose calculation grid of 2 mm [42]. In the optimization 
process, two terminating criteria were introduced for the 
optimization iteration: [1] A maximum iteration number 
of 20 was reached; [2] Once the PTV dose is greater than 
the prescription dose and the constraint target values of 
OARs are in their ideal ranges.

LLMs and prompt engineering
Several LLMs were utilized as virtual physicists for plan 
optimization, including Qwen-2.5-Max (Alibaba cloud, 
Hangzhou, China), Gemini-1.5-Flash (Google, Mountain 
View, CA), and Llama-3.2 (Meta AI, Menlo Park, CA). 
Parameters fed into the LLMs comprised current doses, 
dose goals, constraint target values, ideal ranges of con-
straint target values for OAR optimization objectives, 
and PTV D95 values.

In our clinical practice, the prescription dose is speci-
fied using the PTV D95 metric. For the cases in this 
study, the prescribed dose for the PTV D95 is 3600 cGy. 
According to clinical practice, to optimize the dose dis-
tribution while avoiding excessive hot spots or cold 
spots, we initially set a PTV D95 target between 1.00 
and 1.02 times the prescribed dose. This approach allows 
for greater flexibility in achieving optimal dose confor-
mity and coverage while preventing substantial devia-
tions from the prescribed dose. Following the initial 

optimization, we perform dose normalization to adjust 
the PTV D95 to exactly 3600 cGy.

During customization, we first introduced the main 
goal of this task to LLM, which was to increase the PTV 
dose greater than the prescription while keeping the 
constraint target value of OARs within the ideal inter-
val. Subsequently, the adjustment strategy was intro-
duced, that is, when the constraint target value is greater 
than/less than its ideal range, the dose goal should be 
increased/decreased, while if the constraint target value 
is 0, the dose goal should be adjusted to less than the 
current dose. In supplementary material, we describe 
in detail the specific methods of LLM customization 
through prompt engineering, as well as the inputs and 
outputs of LLM in the planning optimization of a sample 
case. For 5 patients in the training set, after each itera-
tion, we input the dosimetric parameters of PTV and 
OARs to LLM, allowing it to conduct evaluation and 
adjust plan objectives. We then provided the LLM with 
the evaluation opinions of human physicists and the 
adjustment scheme, enabling the LLMs to gradually mas-
ter the decision-making process of human physicists. For 
the test set patients, adjusted objectives from LLMs were 
directly input into uTPS for optimization without manual 
intervention, until the terminating criteria were met.

To enhance LLMs’ adaptive capabilities, prior adjust-
ment strategies and dosimetric parameter changes 
were considered before each optimization objective 
assessment.

Planning evaluation
Clinical plans were developed and approved for all 
patients by experienced medical physicists using uTPS 
through inverse optimization. We collected these clini-
cal plans as the benchmark to verify the feasibility of 
using LLM to optimize radiotherapy plans. All plans were 
normalized to ensure that 95% of PTV coverage met the 
prescription dose. Target volume conformity, OARs dose 
sparing, and Monitor Unit (MU) values were calculated 
and compared between clinical and LLM plans.

Target volume conformity was assessed using the Pad-
dick conformity index (CI) and homogeneity index (HI). 
CI value and HI value were defined as Eqs.  (1) and (2), 
respectively.

	
CI = TVRI × TVRI

VRI × TV
� (1)

	
HI = D2% − D98%

D50%
� (2)

In Eq. (1), VRI and TV represent the volume of the refer-
ence isodose cloud and the volume of the target, respec-
tively. TVRI represents the intersection of VRI and TV. In 

Table 1  Plan objectives and initial dose goals for PTV, oars, and 
auxiliary structures in cervical cancer treatment plan optimization
Structure Plan objective Weight Initial dose goal
PTV Minimum dose 100 3760 cGy

DVH parameters 100 3770 cGy for 
99% volume

Maximum dose 100 3780 cGy
Bladder Mean dose 5 3000 cGy
Rectum Mean dose 5 3300 cGy
Small Intestine Mean dose 5 2050 cGy
Spinal cord Maximum dose 3 2400 cGy
Bone marrow Mean dose 3 2400 cGy
Femoral head left Mean dose 1 2000 cGy
Femoral head right Mean dose 1 2000 cGy
R2 Maximum dose 5 2880 cGy
R3 Maximum dose 5 2520 cGy
R4 Maximum dose 5 2160 cGy
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Eq. (2), D2%, D98%, and D50% represent the dose cover-
ing 2%, 98%, and 50% of the volume, respectively. A CI 
value of approximately 1 indicates better conformity. The 
closer the HI value is to 0, the better the uniformity of the 
target volume. OARs dose sparing was evaluated using 
various dosimetric parameters detailed in Table 2.

To verify the clinical deliverability of the LLM plans, we 
performed patient-specific quality assurance on all LLM 
plans and manual plans using Third QA software (United 
Imaging Healthcare Co., Ltd., Shanghai, China), which 
has been clinically validated.

Statistical analyses were conducted using the Wilcoxon 
signed-rank test with a significance set at P < 0.05 using 
SPSS version 29.0 (IBM Corp., Armonk, NY, USA) [43].

Results
Plan generation results and iteration time
All generated LLM plans underwent evaluation by 
three senior medical physicists. All plans generated by 
Qwen-2.5-max and Llama-3.2 were deemed clinically 
acceptable for all 30 patients in the test set. However, 
Gemini-1.5-flash exhibited issues, with only the first two 

plans meeting the acceptability criteria. In the remaining 
28 patients, Gemini-1.5-flash displayed hallucinations, 
confusing OARs dose sparing across iterations and fab-
ricating data for analysis. Additionally, it occasionally 
deviated from evaluation criteria, leading to counter-
productive optimization adjustments or no adjustments, 
impeding its ability to generate clinically acceptable plans 
for some patients.

Regarding iteration time, uTPS required approxi-
mately 56 s per iteration, while Qwen-2.5-max, Gemini-
1.5-flash, and Llama-3.2 took around 30, 12, and 6  s, 
respectively, for a single processing and output adjust-
ment cycle. For the test set, automatic planning took on 
average 16.3 ± 5.0  min and 9.8 ± 2.1  min for Qwen-2.5-
max and Llama-3.2, respectively, compared to approxi-
mately 20 min for manual planning in our hospital. The 
LLM-based method demonstrated faster plan generation 
speed than manual methods, with Qwen-2.5-max averag-
ing 10.6 ± 3.5 iterations and Llama-3.2 averaging 8.5 ± 2.0 
iterations for plan optimization.

Treatment planning performance between LLM plans and 
manual plans
All manual plans and LLM plans by Qwen-2.5-max and 
Llama-3.2 met clinical prescription requirements for tar-
get coverage. Table 3; Fig. 2 provide a quantitative com-
parison between manual plans and LLM plans in terms 
of PTV dose, OARs dose sparing, target volume confor-
mity, dose homogeneity, and MU values. Comparative 
analyses between manual plans and LLM plans revealed 
that Gemini-1.5-flash plans exhibited suboptimal per-
formance due to hallucinations leading to misguided 
optimization directions. That is, when the restriction on 
one OAR in the current plan is strict enough, Gemini-
1.5-flash would further limit its dose, and as the limita-
tions of the current plan for an OAR tended to become 
nonexistent, Gemini-1.5-flash would further relax the 
limitations until they became nonexistent. Therefore, 

Table 2  Dosimetric parameters selected for cervical cancer plan 
evaluation
Structure Dosimetric parameters
PTV Dmax, D98
Bladder D50
Rectum D50
Small intestine D50
Spinal Cord D0.1 cc
Bone marrow D90
Femoral head left D5
Femoral head right D5
D5: dose covering 5% of the volume

D50: dose covering 50% of the volume

D90: dose covering 90% of the volume

D98: dose covering 98% of the volume

D0.1 cc: dose covering 0.1 cc of the volume

Table 3  Dosimetric parameters of manual plans and plans by different LLMs in the test set (Gy)
Structure Metrics Manual plans Qwen-2.5-Max Llama-3.2 Gemini-1.5-Flash

Mean ± std Mean ± std p-value Mean ± std p-value Mean ± std p-value
PTV Dmax (Gy) 38.61 ± 0.30 38.33 ± 0.42 0.055 38.37 ± 0.28 0.041 39.08 ± 0.82 0.277

D98 (Gy) 35.49 ± 0.07 35.51 ± 0.05 0.25 35.50 ± 0.05 0.45 35.24 ± 0.25 0.002
Bladder D50 (Gy) 30.31 ± 3.36 30.87 ± 2.15 0.804 30.91 ± 2.47 0.804 29.07 ± 2.41 0.041
Small Intestine D50 (Gy) 14.57 ± 3.30 14.25 ± 3.34 0.083 14.26 ± 3.55 0.095 14.78 ± 2.40 0.421
Rectum D50 (Gy) 34.51 ± 2.65 34.12 ± 2.59 0.135 34.22 ± 2.45 0.135 33.47 ± 2.83 0.095
Bone marrow D90 (Gy) 12.09 ± 1.72 12.03 ± 1.93 0.762 12.23 ± 1.71 0.489 12.02 ± 2.11 0.847
Spinal cord D0.1 cc (Gy) 19.87 ± 3.21 20.38 ± 2.44 0.169 20.72 ± 1.73 0.095 20.16 ± 2.92 0.389
Femoral head left D5 (Gy) 27.13 ± 2.43 27.20 ± 2.37 0.762 27.22 ± 2.03 1.000 27.89 ± 1.57 0.151
Femoral head right D5 (Gy) 26.86 ± 2.24 26.66 ± 2.05 0.389 26.89 ± 2.13 0.720 27.34 ± 1.39 0.107

CI 0.926 ± 0.007 0.929 ± 0.007 0.005 0.928 ± 0.007 0.035 0.915 ± 0.014 0.007
HI 0.065 ± 0.006 0.058 ± 0.006 0.005 0.059 ± 0.005 0.015 0.077 ± 0.021 0.107
MU 852.78 ± 76.92 812.65 ± 66.27 0.064 803.95 ± 63.21 0.004 815.46 ± 88.18 0.121
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Fig. 2  Boxplots of dosimetric parameters and other plan parameters in the test set
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Fig. 2  (continued)
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in the Gemini-1.5-flash plan, the dose sparing of some 
OARs is too limited and the others are ignored. As a 
result, Gemini-1.5-flash plans showed compromised tar-
get conformity, dose homogeneity, and maximum dose 
control compared to other methods. The CI value was 
significantly lower than that of manual plans, and the 
maximum dose of the target volume was higher than that 
of plans made by other methods, as shown in Fig. 2.

In terms of OARs dose sparing, Qwen-2.5-max and 
Llama-3.2 plans showed no significant differences from 
manual plans in most dosimetric parameters. In most 
cases, the bladder D50 values for LLM and manual plans 
were comparable. However, one outlier case exhibited a 
significant difference, with the bladder D50 in the LLM 
plan being approximately 6 Gy higher than in the man-
ual plan. This outlier contributed to the higher average 
bladder D50 value observed for LLM plans in Table  3; 
Fig. 2. In terms of the maximum dose in the target vol-
ume, the average maximum dose of Qwen-2.5-max and 
Llama-3.2 were lower than those of manual plans. Nota-
bly, Llama-3.2 demonstrated a statistically significant 
advantage in maximum dose control within the target 

volume. Furthermore, Qwen-2.5-max and Llama-3.2 
plans exhibited significantly improved HI values and 
lower MU values compared to manual plans, indicating 
enhanced target volume conformity, dose homogeneity, 
and reduced complexity.

Figure 3 shows the isodose distribution of the manual 
plan, Qwen-2.5-max plan, and Llama-3.2 plan in three 
different slices of one sample patient. It can be found that 
in this case, there is no obvious difference in the target 
coverage across these three plans, with faster dose fall-
off in the bladder and rectum areas in LLM plans. Fig-
ure 4 shows the comparison of dose-volume histograms 
between different plans of this patient, which are (a) 
manual plan and Qwen-2.5-max plan, and (b) manual 
plan and Llama-3.2 plan. It can be seen that doses to the 
rectum and bladder in these two LLM plans are lower, 
and the target volume conformity of LLM plans is better.

To verify the feasibility of using LLM to optimize radio-
therapy treatment plans for different patients, we com-
pared OARs dose sparing between manual plans and 
LLM plans generated by Qwen-2.5-max and Llama-3.2 
for 30 test patients. Figure 5 shows the distribution of the 

Fig. 3  Isodose distribution of three slices from a sample patient’s plans
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difference on the test set. The results revealed notable 
advantages in PTV Dmax, Bladder D50, Small Intestine 
D50, and Bone Marrow D90 with LLMs outperforming 
manual plans.

Overall, cervical cancer radiotherapy plans generated 
by Qwen-2.5-max and Llama-3.2 closely matched manual 
plans in OARs dose sparing, with superior target volume 
conformity and dose homogeneity. This preliminarily val-
idates the feasibility of utilizing LLM for cervical cancer 
treatment planning.

Regarding the results of patient-specific quality assur-
ance, when the evaluation criteria are set at 3  mm/3%, 
the gamma passing rate for all plans exceeds 0.999. 
When the criteria are tightened to 2 mm/2%, the gamma 

passing rate for manually optimized plans is greater than 
0.99, whereas the gamma passing rate for LLM plans is 
greater than 0.995. This indicates that the LLM plans 
exhibit excellent deliverability. Table 4 presents the mean 
gamma passing rates of plans obtained by different meth-
ods under various criteria.

Horizontal comparison across different LLMs
To further compare the differences in the plans gener-
ated by different LLMs, we calculated the relative differ-
ences in dosimetric parameters between plans generated 
by Qwen-2.5-max and Llama-3.2, as shown in Table 5. It 
can be found that the relative differences between plans 
generated by these two LLMs were minimal, with aver-
age relative differences of less than 3% for PTV dose and 
OARs dose sparing, showing no statistical significance. 
Despite significantly lower MU values in Llama-3.2 plans, 
the mean difference between the two LLMs was only 8.7 
MU, indicating effective treatment planning and accept-
able plan generation capability across different LLMs 
(Table 5).

Table 4  Gamma passing rates of manual plans and LLM plans 
under different criteria
Criteria Manual 

plans
Qwen-2.5-Max Llama-3.2 Gemini-1.5-

Flash
3 mm/3% 0.999 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
2 mm/2% 0.995 ± 0.007 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

Fig. 5  Difference distributions between manual plan and different LLM plans on test set, (a) dosimetric parameters, (b) target volume conformity and 
dose homogeneity

 

Fig. 4  Comparison of dose-volume histograms between manual plan and different LLM plans (dashed line)
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Discussion
This study delved into the feasibility of leveraging large 
language models for optimizing radiotherapy treatment 
plans. The findings revealed that Gemini-1.5-flash strug-
gled to produce clinically acceptable plans due to halluci-
nation effects, while both Qwen-2.5-max and Llama-3.2 
successfully generated such plans. Concerning OARs 
dose sparing, neither the Qwen-2.5-max nor Llama-3.2 
plans exhibited statistically significant discrepancies from 
manual plans. Across the test set, the average D50 values 
for the small intestine and rectum in the Qwen-2.5-max 
and Llama-3.2 plans were marginally lower than those in 
manual plans. However, for the bladder’s D50 and spinal 
cord’s D0.1 cc, manual plans slightly outperformed LLM 
plans, with the bladder D50 averaging 0.5–0.6 Gy lower 
and the spinal cord D0.1 cc 0.5–0.8 Gy lower. Studies by 
Okonogi [44] and Jadon [45] suggest that a 0.5 Gy dose 
variation may not lead to distinct clinical outcomes for 
the small intestine, rectum, and bladder. Moreover, a 
spinal cord D0.1  cc of 20  Gy typically does not induce 
significant spinal cord injury [46]. Thus, the differences 
in OARs dose sparing between LLM plans and manual 
plans are not substantial.

In this study, we compared the dose differences 
observed in our research with findings from previous 
studies. Kang et al. reported no significant differences 
between KBP and manual plans in terms of PTV D2%, 
D98%, and conformity index, though a significant reduc-
tion in the homogeneity index was observed in KBP 
plans. Regarding OAR dose sparing, KBP reduced doses 
for most OARs, except for the small intestine and the 
left femoral head [47]. Similarly, Swamidas et al. found 
that KBP achieved comparable target coverage to man-
ual plans while significantly reducing doses to the spinal 
cord and femoral heads [48]. Compared to these KBP-
based methods, the LLM-based method in our study 
demonstrated advantages in CI and HI. Regarding OAR 
dose sparing, the LLM plans resulted in lower doses to 
the small intestine and rectum than the manual plans. 

These findings highlight the potential of LLMs in auto-
matic treatment planning. In future research, we plan 
to explore a variety of other treatment planning meth-
ods, including knowledge-based planning (KBP), and 
compare the dose differences among plans generated by 
different approaches. This will provide a more compre-
hensive evaluation of the performance of the LLM-based 
method and its potential applications in clinical practice.

The initial plan objectives were established by senior 
medical physicists based on their clinical expertise in this 
study. The application of these uniform initial objectives 
enhanced plan optimization efficiency, yielding accept-
able results in under 20 iterations across the test set, even 
in cases with inguinal targets, in which the initial dose 
goal might be too strict for femoral heads. Specifically, 
the initial dose objective for the mean dose to the femo-
ral heads was set at 2000 cGy. For typical cervical cancer 
plans, this dose objective is relatively close to the dose 
ultimately achieved. During the optimization process, 
only a few adjustments were typically required to bring 
the constraint target value into the ideal range. How-
ever, for patients with inguinal targets, the mean dose 
to the femoral heads may reach 2300 to 2400 cGy. Con-
sequently, in the initial iterations, the constraint target 
value was relatively high, often exceeding 1.00E-1. While 
such a large deviation from the ideal range is uncommon 
in other typical plans, the LLM in this study effectively 
overcame this challenge by making substantial initial 
adjustments, followed by gradual reductions in adjust-
ment amplitude. This approach allowed the femoral head 
constraint target value to reach the ideal range after only 
a few iterations.

For all patients in the test set, Llama-3.2 required 
fewer than 11 iterations, and Qwen-2.5-max fewer than 
18 iterations, demonstrating the method’s adaptability 
for various PTV and OARs locations. Unlike existing AI 
methods employing dose prediction and reinforcement 
learning, this approach utilizes fixed initial objectives 

Table 5  Comparison of dosimetric parameters between plans by Qwen-2.5-max and Llama-3.2
Structures Metrics Qwen-2.5-max Llama-3.2 Mean relative difference p-value
PTV Dmax 38.33 ± 0.42 38.37 ± 0.28 0.10% 0.489

D98 35.51 ± 0.05 35.50 ± 0.05 -0.02% 0.303
Bladder D50 30.87 ± 2.15 30.91 ± 2.47 -0.10% 0.277
Small Intestine D50 14.25 ± 3.34 14.26 ± 3.55 0.32% 0.762
Rectum D50 34.12 ± 2.59 34.22 ± 2.45 0.06% 0.720
Bone marrow D90 12.03 ± 1.93 12.23 ± 1.71 2.16% 0.095
Spinal cord D0.1 cc 20.38 ± 2.44 20.72 ± 1.73 2.09% 0.208
Femoral head left D5 27.20 ± 2.37 27.22 ± 2.03 0.25% 0.847
Femoral head right D5 26.66 ± 2.05 26.89 ± 2.13 0.87% 0.167

CI 0.929 ± 0.007 0.928 ± 0.007 -0.15% 0.083
HI 0.058 ± 0.006 0.059 ± 0.005 3.79% 0.136
MU 812.65 ± 66.27 803.95 ± 63.21 -1.04% 0.048
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without the need for extensive training data, thereby 
reducing training time and data requirements.

During treatment planning using LLMs, we observed 
the models’ capacity to learn from previous iterations and 
adjust optimization objectives progressively. The models 
autonomously adapt the adjustment amplitude of dose 
goals based on feedback, ensuring convergence towards 
the ideal constraint target value. In this study, since the 
initial objectives for most OARs were not strictly lim-
ited, after the first few iterations, the constraint target 
value of some OARs was usually too small or even zero. 
In this scenario, LLM adjusted the dose goal by a large 
amplitude (for example, 100  cGy). When the constraint 
target value was gradually approaching its ideal range, 
LLM detected this trend without human intervention 
and actively reduced the adjustment amplitude of the 
dose objective (such as 50 cGy and 20 cGy) until the con-
straint target value reached the ideal range. In the follow-
ing research, we aim to explore the potential for further 
refinement by allowing the LLM to independently assess 
the potential for optimization based on dose distribution 
and other relevant information, rather than relying solely 
on empirical rules. This approach will enable the LLM 
to make autonomous decisions regarding dose objective 
adjustments, potentially leading to improved solutions.

Notably, Qwen-2.5-max and Llama-3.2 outperformed 
Gemini-1.5-flash in this study, as they effectively inter-
preted input data and generated reasonable outputs. 
Conversely, Gemini-1.5-flash exhibited hallucinations, 
ignored provided iteration results, and occasionally mis-
judged adjustment directions, leading to subpar perfor-
mance. The occurrence of hallucinations in LLMs, as 
noted by Lee et al., may result from excessive repetitive 
information biasing the model’s knowledge memory 
[49]. In our study, standardized input specifications and 
prompts might contribute to hallucination issues. Beyond 
that, the hallucination of LLM may also be caused by fac-
tors such as model structure, model size, and decoding 
algorithm [50, 51].

The relatively large model sizes of Qwen-2.5-max and 
Llama-3.2 pose challenges for integration and deploy-
ment within clinical TPS. Future research should explore 
employing smaller LLM models for iterative radiother-
apy treatment plan optimization. Additionally, investi-
gating more effective prompts, incorporating Retrieval 
Augmented Generation (RAG) technology [52–54], or 
experimenting with Controlled Text Generation (CTG) 
methods [55, 56] could also be explored to enhance the 
reliability of utilizing smaller LLMs to adjust plan optimi-
zation parameters.

In subsequent studies, we will try to leverage LLMs to 
optimize radiotherapy plans for diverse tumor sites and 
integrate LLMs with TPS to expand their applicability in 

radiotherapy plan optimization, ultimately enhancing the 
automation of radiotherapy treatment planning.

Conclusion
This study delved into the feasibility of employing large 
language models for automated radiotherapy treatment 
planning, utilizing various LLMs. Comparative analy-
sis between LLM-generated plans and manual plans 
revealed that Qwen-2.5-max and Llama-3.2 effectively 
crafted clinically acceptable cervical cancer plans based 
on provided prompts. Notably, the LLM-based method 
exhibited a lower time cost for plan generation compared 
to the manual method. Regarding dosimetric parameters, 
no significant disparities were observed in PTV dose 
and OARs dose sparing between LLM plans and manual 
plans. LLM plans showcased superior target volume con-
formity relative to manual plans. In essence, this study 
offers initial validation for leveraging LLMs in automat-
ing treatment planning for cervical cancer. By supplant-
ing manual planning, the LLM-based approach has the 
potential to alleviate physicists’ workload and stream-
line their processes, thereby augmenting overall clinical 
efficiency.
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